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Abstract

We introduce a new approach to aggregating the beliefs
and preferences of many individuals to form models for
democratic decision-making. Traditional social choice
functions used to aggregate beliefs and preferences at-
tempt to find a single consensus model, but produce in-
consistent results when a stalemate between opposing
opinions occurs. Our approach combines the probabilis-
tic beliefs of many individuals using Bayesian decision
networks to form collectives such that the aggregate of
each collective, or collective belief conforms to princi-
ples of rationality in social choice theory. We first ex-
tract the symbolic preference order from each individ-
ual’s quantitative Bayesian beliefs. We then show that if
a group of individuals share a preference order, their ag-
gregate will uphold principles of rationality defined by
social choice theorists. These groups will form the col-
lectives, from which we can extract the Pareto optimal
solutions. By representing the situation competitively
as opposed to forcing cooperation, our approach identi-
fies the situations for which no single consensus model
exists, and returns a rational set of models and their cor-
responding solutions. Using an election simulation, we
demonstrate that our approach predicts the behavior of
a large group of decision-makers more accurately than
a single consensus approach.

1 Introduction

We introduce a new approach to aggregating the beliefs and
preferences of many individuals to form models for demo-
cratic decision-making. Computational models for social
decision-making have the potential to change the decision-
making paradigm in a society. For example, we see promise
in leveraging the viral nature of popular social-networking
tools to build computational models for collective decision-
making that would enable individuals to have a direct in-
fluence in the social, economic, and political decisions that
affect them. These collective intelligence models can com-
municate the diverse ideas, beliefs and preferences of indi-
vidual stakeholders to decision-makers so they can be di-
rectly incorporated into policy. The potential of collective
decision-making models to enable informed and thoughtful
decision-making at societal scales motivates this work.

We combine the probabilistic beliefs of many individuals
using Bayesian decision networks. As a decision-making

tool, Bayesian networks provide a rich structure to represent
the uncertainties, goals and multi-factor nature of real-life
decision-making. However, social choice and Bayesian the-
orists state that it is not possible to combine, or aggregate
arbitrary beliefs or preferences to form a consensus model
that behaves rationally. For example, the Nobel-laureate
economist Kenneth Arrow showed that attempting to find
a “social preference” order given a ranked order of options
from multiple individuals can result in a situation that does
not conform to mathematical principles of rationality (?;
?; ?). Economists Hylland and Zeckhauser extended these
findings for Bayesian decision-making by aggregating prob-
abilistic beliefs and utilities.

Our approach discovers the set of collective belief models

within a population of interest. In (?) and (?) we introduced
our approach to separate individuals into similar groups or
clusters based on their beliefs and preferences. In this paper,
we define the “extent” to which individuals within a collec-
tive should agree. In particular, we show that if a group of
individuals share a common preference order over the deci-
sion alternatives, that their aggregate will uphold the ratio-
nality properties defined by social choice theorists. In this
paper, we describe and verify our process for enabling ratio-
nal democratic decision-making, summarized below:
i Elicit beliefs and preferences from individuals

ii Compute the expected utility of a set of decision options
using the Bayesian decision networks

iii Extract the symbolic preference order used in social
choice theory from each individual’s expected utility.

iv Form collectives from the groups who share a preference
order.

v From these collectives we find their collective belief,
which is the aggregate of the beliefs of the individuals
in the collectives. We show that if a group of individuals
share a preference order, their aggregate will uphold prin-
ciples of rationality defined by social choice theorists.

vi Finally, we form a decision-making game in which each
of the “players” is derived from one of the collective belief
models. We then extract the Pareto optimal solution from
the preference orders of the collectives.
Using a strategic election simulation, we show that our

approach more accurately predicts the behavior of a large



population of decision-makers than the single consensus ap-
proach. In fact, we show a situation in which the single con-
sensus approach incorrectly predicts the outcome of a sim-
ulated election, while our approach accurately predicts the
outcome and provides additional information about the be-
havior of voters that the single consensus approach does not.
For instance, in a strategic situation we demonstrate how we
can discover the Nash equilibrium solution.

The paper is organized as follows. Section ?? summarizes
the rationality principles for aggregating beliefs and prefer-
ences defined by social choice and Bayesian theorists and
corresponding impossibility results. Section ?? presents our
belief aggregation approach for democratic decision making
and verifies that our collective belief models produce ratio-
nal results. Section ?? describes an election simulation that
compares our collective choice function to a traditional so-
cial choice function. Finally we conclude in Section ?? with
a brief discussion of our continued and future research.

2 Background

Our approach connects two significant fields of study;
Bayesian decision-making and social choice theory. In this
section, we give a very brief description of Bayesian net-
works, and then summarize several decades of research that
investigated the “irrationality” of combining, or aggregating
preferences and beliefs to form one consensus model. We
begin with a summary of Arrow’s “impossibility” theorem
(?; ?; ?). We then update similar findings by early Bayesian
theorists (?) using a Bayesian network.

2.1 Bayesian Networks

We base our research on a framework that is well-studied
in Artificial Intelligence. Bayesian networks, also known as
belief networks, are a form of graphical model that integrate
the concepts of graph theory and probabilistic reasoning (?).
These networks define dependencies between variables that
can represent causality, implication or correlation. In a typ-
ical Bayesian network, random variables are represented by
nodes and conditional relationships by directed edges. A
variable X is conditioned on all of its parents, described by
the expression P (X|Pa

x

), where Pa
x

is the set of parents
of X . Inference is the recursive process of computing the
posterior probability of a variable from probability distribu-
tions passed from a variable’s parents and children (?).

Bayesian networks can be extended to address deci-
sion problems using influence diagrams (?), also known as
Bayesian decision networks. In addition to nodes represent-
ing random variables (or chance nodes), influence diagrams
contain decision nodes, representing a set of decision alter-
natives; and utility nodes, representing the value associated
with an outcome.

Bayesian belief aggregation is the process of combin-
ing probability estimates from multiple human or software
agents to form a consensus network (?; ?). Belief aggrega-
tion typically uses an opinion pool function to form an ag-
gregate distribution from multiple beliefs. An opinion pool
function is an example of a social choice function in social
choice theory.

2.2 Rationality of Aggregation

Our approach splits a population of individuals with diver-
gent beliefs into groups of similar beliefs. Our objective is
to define a splitting function such that the aggregate of be-
liefs within each group will have rational behavior. In this
section we summarize the mathematical principles of ratio-
nality with respect to combining the preferences, beliefs and
utilities of multiple individuals, as defined by theorists in the
fields of voting, decision and probability theories. We then
summarize well-known counter examples that demonstrate
the failure of aggregation methods. In Section ?? we will
present our belief aggregation approach and demonstrate
that it produces groups of individuals whose aggregates up-
holds the rationality principles in the same situations.

Arrow’s Axioms We first discuss rationality when indi-
viduals and groups consider their preferences deterministi-
cally and symbolically. In other words they supply a precise
preference order over a set of options that is not based on
the uncertainty of outcomes or their perceived risk. Voting
theory, the study of combining votes or preferences to select
an outcome, has found that combining preferences using a
ranked order over the options results in irrational behavior.
In particular, the economist Kenneth Arrow developed a the-
orem that states that there is no rational way to aggregate
a number of arbitrary votes when there are three or more
options to choose from (?). In summary, the social choice
function breaks a transitive assumption that states if A is
preferred to B by a majority of voters, and B is preferred to
C by a majority, then A should be preferred to C. A simple
example shows that transitivity cannot hold unless there is a
dictatorship (one person’s vote is the rule).

We now summarize the properties of rationality defined
by Arrow and other researchers with respect to aggregating
preferences. First, we provide the notation used to describe
the preference relationships between two alternative options
x and y. A combination of these relations forms a preference
order over a set of three or more options.

Notation The following notation represents the possible
preference order relationships between two options x and y
(?).
x, y: alternative options; i, j: individual people

i. xP
i

y: Person i strictly prefers x to y

ii. xI
i

y: Person i is indifferent to x and y (doesn’t prefer
either)

iii. xPy: The society S prefers x to y

iv. xIy: S is indifferent to x and y

v. xRy: S prefers x to y or is indifferent to them

We illustrate these preference order relations with a sim-
ple example. Suppose person A prefers vanilla ice cream
to chocolate, and chocolate to strawberry. Their pairwise
preference orders would be vP

a

c and cP
a

s. Putting them to-
gether for all flavors results in the preference order vP

a

cP
a

s.
Suppose another individual B prefers vanilla to chocolate,
but is indifferent between chocolate and strawberry. B’s
preference order could be vP

b

cI
b

s or vP
b

sI
b

c. Since both



Given a society of interest, S and a social choice function:
1. Completeness (CP): Social choice function returns an

order that includes all relevant alternatives
2. Transitivity (TP): if S prefers A to B and B to C then S

prefers A to C (also replace “prefers” to “is indifferent
to”)

3. Pareto optimality (should be at least weekly Pareto op-
timal):

(a) Weak Pareto principle (WP). For all x and y, if xP
i

y
for all i, then xPy:

(b) Strong Pareto principle (SP). For all x and y, if xR
i

y
for all i, and xP

i

y for some i, then xPy:
4. Non-dictatorship (NDP). There is no dictator. Individ-

ual i is a dictator if, 8x and 8y, xP
i

y ! xPy.
Figure 1: Rationality properties defined by Arrow and other
social choice theorists.

Group Vanilla Chocolate Strawberry
X 1 2 3
Y 2 3 1
Z 3 1 2

Table 1: Table showing the preference orders for ice cream
for three groups (1 is the most preferred flavor).

individuals prefer vanilla to chocolate, we could make a gen-
eralization that states vPcRs. Note that we could not say
vPsRc because this would contradict A’s preference.

There are several properties for rationality discussed by
social choice theorists (?; ?; ?). The properties shown in
Figure ?? summarize those addressed in this paper. A sim-
ple example (?) demonstrates a situation in which a social
choice function fails to conform to these properties without
relaxing another property (such as non-dictatorship). Con-
sider Table ?? that shows three separate group’s preferences
for ice cream, where a rank of 1 indicates that the flavor is
the top choice for the individual. When attempting to find
a consensus preference order that combines all the groups
given their ice cream preferences, one compares each pair
of flavors in the following manner using a majority vote:

• Two out of the three individuals prefer vanilla (v) to
chocolate (c), so vPc

• Two out of the three individuals prefer chocolate to straw-
berry (s), so cPs

• Given the above preferences, if vPc and cPs, then vPs
should hold, however, we see that the majority actually
prefers strawberry to vanilla (sPv)

Thus, the transitivity principle cannot hold without relaxing
another principle.

Bayesian Rationality We now discuss rationality in the
presence of uncertainty. In this case, probabilities are used to
represent an individual’s (or group’s) belief in the likelihood
of an event given its causal factors, while utilities indicate
the value of an outcome given the inherent uncertainty. It
is natural that the properties defined above for rationality in

Figure 2: Bayesian decision network for a simple decision
involving two possible actions in A, a binary variable X and
utilities U .

the non-deterministic case also hold in probabilistic belief
aggregation.

Hylland and Zeckhauser (?) show that aggregating prob-
abilistic beliefs and utilities can result in an aggregate that
breaks the Pareto optimality rule. Their results apply to the
Bayesian decision network in Figure ??. The authors find
the aggregate of the expected utility U(A) by first finding
the aggregates of the agents’ beliefs P (X) and conditional
utilities U(A|X) and then finding U0(A) = U(A|X)P (X).

In the situation the authors describe, it appears that the
aggregate prefers a2 over a1. However, each individual ac-
tually prefers a1 to a2:
First individual:

U1(A = a1) = 1.0 ⇤ 0.75� 1.2 ⇤ 0.25 = 0.45
U1(A = a2) = 0 ⇤ 0.75 + 0 ⇤ 0.25 = 0.0

Second individual:
U2(A = a1) = �1.2 ⇤ 0.25 + 1.0 ⇤ 0.75 = 0.45
U2(A = a2) = 0 ⇤ 0.25 + 0 ⇤ 0.75 = 0.0

Aggregate:
U0(A = a1) = �.1 ⇤ 0.5� .1 ⇤ 0.5 = �.1
U0(A = a2) = 0
Thus, the aggregation result breaks Pareto optimality.

(?) extend these findings and define a preference ordering
among expected utilities, such that option o

i

is strictly pre-
ferred to o2 if and only if the expected utility of o1 is greater
than that of o2. We extend this preference ordering in Defi-
nition ??.

3 Approach

Traditional social choice functions used to aggregate beliefs
and preferences attempt to find a consensus for a whole pop-
ulation, but fail to produce rational results when a stalemate
between opposing opinions occurs. By representing the sit-
uation competitively as opposed to forcing cooperation, our
approach identifies the situations for which no single con-
sensus exists, and returns a set of solutions from which a
game-theoretic solution can be found. This section describes
our approach to enable rational democratic decision making
and verify that our collective choice function upholds the
principles for rationality defined by social choice theorists.

3.1 Forming Collectives

We now discuss how we overcome the irrationality results
described in Section ??. In this section we define the proper-



ties of our collective belief models and show that they main-
tain rational behavior in the previous examples that break
rationality principles. Our initial approach (?) was to clus-
ter a population into groups depending on their “similarity.”
In this paper we present a more rigorous definition for the
properties of clusters in order to overcome the theoretical
limitations.

Definitions The following definitions will be used to de-
scribe and defend our approach.

Definition 1. Rank Order: A rank order is a partially or-
dered set such that, given a set of options O containing n
options o1..on, a ranked order R over O is an order such an
item ri is preferred to (or indifferent to) rj if and only if ri is
before rj in the order.

We now provide a mathematical definition of the term
“collective.” We first consider the term’s definitions in the
English language. The Merriam Webster definition states
that a collective is “marked by similarity among or with the
members of a group” and “involving all members of a group
as distinct from its individuals.” (m-w.com) The second def-
inition implies that there is some generalization about the
group that can be stated without referring to the individual
group members.

We are interested in a more rigorous definition of a collec-
tive that captures the implications of these English language
definitions in a mathematical or set theoretic form. Since we
have not found one in the literature, we will form our own
definition of a collective as follows. A collective is a group
such that a specific generalization of the group holds for all
members of the group. In set theory, this is simply a subset,
with the generalization being the property that defines the
subset.

Definition 2. Collective: A collective C w.r.t. a property A
is a subset of a population P (C ✓ P) s.t. A holds for all
members of C. If A holds for an individual p ✓ P then p is
a member of C.

Arrow’s theorem shows that there is no aggregate in gen-
eral that represents the group based on the equal participa-
tion of the group (?; ?; ?). However, if a group of individuals
has an identical rank order of their preferences, then we can
make a generalization about that group based on this rank
order. We illustrate with an example: if O = {A, B,C} and
R

i

= BCA and R
j

= BCA, then R = BCA. Thus, if a
group of individuals G shares a rank order R over a set of
discrete valued options O then R can define a collective C.
We now we state the following definition for a rank order
shared by a group of individuals.

Definition 3. Rank Order Collective: If R is a rank order
over a set of options O, and C is a collective s.t. 8ci 2 C,
the rank order of ci is R, then C is a rank order collective.
In this case, A as defined in Definition ?? is specified to be
R.

We will now map Bayesian outcomes to the rank order
concept. Each variable X

i

in a Bayesian network has a
number of possible values ({x

i1, xi2, ..., xin

}), where n is
the arity of X

i

. The posterior probability of a variable in

a Bayesian network being a specific value (x
ij

) is derived
through inference.

Given the posterior probabilities of the values of a vari-
able, there will be an order from most likely to least likely
for these possible values. For example, given a binary
variable X , with a probability distribution P (X = T ) =
0.25, P (X = F ) = 0.75, the order of values is FT. This
order is analagous to the rank order in Definition ??. In the
case of a Bayesian decision network, the result of inference
will be is a set of expected utilities for the possible deci-
sion options. The decision options can be ranked by order
of highest expected utility to lowest expected utility, or best
to worst option. Given a Bayesian network, the rank order
can be determined for an arbitrary variable or decision.
Definition 4. Bayesian Rank Order: A Bayesian rank
order B with respect to a variable X in a Bayesian
network is the rank order of the posterior probabilities
(P(X = x1),P(X = x2), ...,P(X = xn)) of the values of X.
In a Bayesian decision network, B is the rank order of the
expected utilities (U(o1),U(o2), ...,U(on)) of the options of
D, where U(oi) is the expected utility of decision option oi.

Before we define a collective in terms of the Bayesian
rank order, we show that an aggregate of m > 1 equivalent
Bayesian rank orders R always results in R. We illustrate
this by showing that the mean of m > 1 arbitrary sets of n
ordered values in R results in an ordered set of values.
Theorem 1. The sum of m > 1 sets of n real valued (r 2 R),
ordered numbers will result in an ordered set.
Proof 1. We prove this by contradiction. Imagine that we
have two sets of n cups (C1 and C2) that are ordered from
left to right such that a cup on the left has � the liquid as
the cup to its right. Now consider that one adds the liquid
in each of C2’s cups to C1’s cup. So cup c2i

is added to cup
c1i

. The amount of liquid in the cups in C2 will remain in
order. If this were not the case, then cup c2j

would have had
to have had more in it than cup c2i

(where i is farther left
than j). However, this would mean that C2 was not in order,
which would be a contradiction.

Since the arithmetic mean will be found by normalizing
the combined amounts in each cup by the same amount (k),
finding the mean will not affect the rank order. The collec-
tive belief of a collective is then the aggregate of the beliefs
that define the Bayesian rank order for the collective.
Definition 5. Collective Belief: If B is a Bayesian rank or-
der over the probabilities of a variable X (or the utilities of a
decision D) and C is a collective s.t. 8ci 2 C, the Bayesian
rank order of ci is B, then the collective belief � of C is
the aggregate of the k probability distributions (or expected
utilities) supplied by the members of C.
Definition 6. Collective Belief Model: A collective belief
model is a Bayesian belief network derived from aggregating
the structure and parameters that resulted in the collective
belief � for a collective C.
A collective belief model can be formed for each collec-
tive that emerges from a population by aggregating the prior
probability distributions supplied by the individuals in C for



all ancestors and descendants of X (or D). The following
definitions define the set of rank order collectives for a pop-
ulation P .
Definition 7. Partition: A partition T of a population P is a
set of collectives such that all individuals in P are in exactly
one collective Cj. A partition will be either weak or strong
as defined below.
Definition 8. Strong Partition: A strong partition Ts of a
population P is a partition such that each individual can be
assigned to one and only one collective Cj. In other words,
there is a unique partition Ts for the population P.
Definition 9. Weak Partition: A weak partition Tw of a pop-
ulation P is a partition such that each individual could fit
into multiple collectives, but is assigned to only one.

Finally, our collective choice function is defined as fol-
lows.
Definition 10. Collective Choice Function: Given a popu-
lation P and a set of options O, over which each individual
i in P provides a rank order Ri:
i Separate a population P into m groups such that each in-

dividual in group Gj has a rank order Rj over the options
O. (Ri = Rj iff i 2 Gj).

ii Each group Gj becomes a collective Cj defined by its col-
lective rank order Rj. The union of each C

j

is a partition.
iii In a Bayesian environment, use an opinion pool function

(e.g. arithmetic or geometric mean) to compute the ag-
gregate of C

j

’s probability distributions or utilities.
We will form our rank order collectives based on the pair-

wise preference order relations defined in the Section ??.
In particular we are interested in the following society rela-
tions, which are generalizations about a society, population,
or in our case, a collective (C): xPy, xIy and xRy. A pref-
erence order among more than two options can be made up
of any combination of the R, P and I relations. The rank
order for each rank order collective is a preference order
formed in this manner.

Rationality of Collectives We now present a sketch of
how our collective choice function upholds the properties
defined in Figure ?? by creating a solution for each collec-
tive, such that the properties hold within each collective. The
social choice functions described in Section ?? attempt to
find a single consensus, but fail to produce rational results
when a stalemate occurs (Arrow’s findings) and when the
beliefs are in opposition (Hylland and Zeckhauser’s find-
ings). Instead of failing, our approach identifies the situa-
tions for which no single consensus exists, returning a set of
solutions composed of a consensus for each collective. We
briefly discuss each rationality principle defined in Figure ??

in the context of our collective choice function.

1. Completeness (CP): Our collective choice function will
return a set of solutions S = [m

j=1Rj

where R
j

is the
rank order of the rank order collective C

j

that emerges
from a population P .

2. Transitivity (TP): Since there is only one rank order per
collective over a set of options O, and a rank order up-

holds the properties of a partially ordered set, then transi-
tivity holds by the properties of a partially ordered set.

3. Weak Pareto principle (WP): The weak Pareto principle is
upheld implicitly by our definition of rank order collec-
tive. For all individuals i 2 C, if the rank order for i = R
then the rank order for C = R. Thus, for all options x
and y, if xP

i

y then xPy for C. (?) also state this find-
ing when there is consensus among the preference order
of expected utilities.

4. Non-dictatorship (NDIP): The rank order R of a collec-
tive happens to be the same as an arbitrary individual i in
the collective C. However, this is not a dictatorship since
the order of the remainder of the collective (C 0 = C � i)
would persist even if individual i changed his belief.

3.2 Applying Game Theoretics

The next step in our social decision-making process is to
form a game to enable us to find the Pareto optimal solu-
tions for a partition derived from an arbitrary population. In
some cases we can form a strategic game that may enable us
to find Nash equilibrium, minimax and other game-theoretic
solutions. In our games, each “player” is defined by the col-
lective rank order or collective belief discovered by our col-
lective choice function. Essentially, each player represents
the shared beliefs and preferences of its collective.

Extracting the Pareto optimal solution A Pareto optimal
solution is one in which no players can do better (have a
higher utility) without another player doing worse (?). In
our case, this means that for each option o

i

2 O, o
i

is a
Pareto optimal solution if there are no other options o

j

, for
which all collectives provide a higher ranking than o

i

. Given
the rank orderings from our collectives we would like to ex-
tract the Pareto optimal solution from a strong partition T

s

derived from an arbitrary population P . We first consider
the situation in which all relations in a rank order are the
strict preference (P ), in other words the solution will be
weakly Pareto optimal. We can show that in this case, the
weak Pareto optimal solution S

wp

is the union of each of the
collective’s most preferred option, corresponding to the first
item r

j1 in R
j

, where R
j

is the rank order for the collective
C

j

.
S

wp

= [m

j=1rj1 (1)

Theorem 2. The weak Pareto optimal solution Swp for a
partition Ts that uses only the P (strict preference) relation
is composed of the union of the highest ranked option (rj1)
from each collective C

j

in T
s

:

Proof 2. We prove this by contradiction. If S
wp

, derived
as in eq. ??, were not the weak Pareto solution, then there
would be some option oi 62 Swp that was preferred by some-
one to all other options oj. However, this cannot be the case
since all options in Swp are the most preferred options. Thus
Swp must be the weak Pareto solution.

We discuss the algorithm to find the strong Pareto optmial
solution in (?). We cannot extract a Pareto optimal solution
from a weak partition T

w

using this approach, because one
cannot distinguish preference and indifference.



Applying the collective choice function We now revisit
the examples in section ?? using our collective choice func-
tion. In the ice cream example illustrated by Table ??,
our collective choice function will result in three collectives
X 0, Y 0 and Z 0, equivalent to the groups X,Y and Z. As-
suming a strict preference ordering, we see that each of the
ice cream choices is a Pareto optimal solution, since the
union of each collective’s preferred option is the entire set
of options. In this stalemate situation our approach discov-
ers a rational solution to this problem while the majority vote
social choice function fails.

We next revisit the Bayesian example derived from
Hylland and Zeckhauser’s (?) findings discussed in Section
??. The example showed that this social choice function
resulted in a solution that was not Pareto optimal. The
following table shows the Bayesian ranked orders for the
individuals i1 and i2 based on their beliefs about U(A|X)
and P (X). The last row in the table shows the ranked order
results from the social choice function computed in Section
??, represented by i0.

Individual U(A|X) P(X) U(A)
i1 a1a2a2a1 FT a1a2

i2 a2a1a1a2 TF a1a2

i0 a2a1a2a1 TForFT a2a1

For the conditional utility U(A|X), the rank order is com-
posed of the rank order for A given that X is false, followed
by the rank order for A given that X is true. For P (X), a
rank order of FT indicates that the individual believes that
X is more likely to be false than true, while TF indicates
the opposite. Our collective choice function will not aggre-
gate different rank orders, therefore i1 and i2 would not be
combined to find i0. Instead, each individual would form its
own collective, resulting in the collective rank order a1a2.
Clearly, in this case the only Pareto optimal solution is a1.

4 Experiments

Our vision is to utilize direct input from human contributors
to form our collective belief models. In (?; ?) we elicited
opinions from real people using Amazon’s Mechanical Turk
(mturk.com) and surveymonkey.com. However, for the fol-
lowing experiment, we simulate human opinions in order to
analyze the behavior of changes in parameters.

4.1 Election Simulation

We present the results of an election simulation in which
there are three candidates, two sharing a majority of the vote
within a few points of each other, while a third has a small
minority. We will show that our collective choice function
is a better predictor of the voting behavior of a population
than a social choice function that finds a single consensus.
In fact, the social choice function incorrectly predicts the
outcome of the election in a contrived (but believable) situa-
tion. The simulation is strategic in that each individual may
change her vote based on how she believes the remainder of
the population will vote.

Given a simulated population, our simulation computes
each individual’s expected utility for each candidate using

Figure 3: A Bayesian decision network for an election simu-
lation in which the rectangle represents the decision options
(candidates), the oval labeled Win represents the belief that
each of these candidates will win and the diamond represents
the conditional utility of the winner. Win is also dependent
on Stubbornness, which is the probability that an individual
will be resistant to changing beliefs.

a simple decision network, shown in Figure ??. Each indi-
vidual will provide a conditional utility for each candidate
that represents the utility of a candidate given the candidate
wins. In other words, the projected utility of each candidate
if that candidate won. In this simulation the social choice
functions utilize the expected utility of a candidate, which
depends on the individual’s belief in that candidate winning
(oval labeled Win). For instance, an individual may prefer
one candidate, but believe that the likelihood of him win-
ning is low, therefore the expected utility of the individual’s
second favorite candidate may actually be higher.

Initialization: The simulation is initialized with a popula-
tion P of individuals and a set of candidates O. Each simu-
lated individual will provide: U(O|W ), a conditional utility
for each candidate given the candidate wins; P (W = T |O),
an initial belief in each candidate winning; and P (S), a
probability of being stubborn, where stubbornness = 1.0
means that the individual is completely resistant to changing
her belief. The simulation then repeats a “polling” process
until convergence occurs. We define convergence as a situa-
tion in which no individual has switched votes for a specified
number of repetitions.
Simulation Parameters:

• weights: contains a weight for each candidate to indicate
the proportion of the population that initially prefers each
candidate

• N , the population size

• C, the number of repetitions with no switches that is re-
quired for convergence

Each of the N individuals is randomly assigned a pre-
ferred candidate based on the weights parameter. Each in-
dividual will set the conditional utilities for each candidate
based on her preference. The candidates are on a range from



“left” to “right,” such that an individual that prefers the left-
most or rightmost candidate will give second preference to
the middle candidate (not the opposing candidate). An indi-
vidual that prefers the middle candidate has an equal prob-
ability of leaning to the left or right for their second most
preferred candidate. The stubbornness value for each indi-
vidual is assigned randomly between 0.5 and 1.0. Each in-
dividual initializes her Win beliefs based on the candidate’s
utility and her stubbornness. Every individual will consider
her preferred candidate more likely, but a more stubborn in-
dividual will overwhelmingly favor her preferred candidate.

Each individual will then compute her expected utility for
each candidate o 2 O using the following formula:

U(o) = U(o|w) ⇤ P (w|o) (2)

The individual will then set her initial “vote” to the candidate
with the highest expected utility. The initial vote count is the
count of votes to each candidate for the whole population.

Social choice functions We are comparing a single con-
sensus social choice function and our collective choice func-
tion. The single choice function is an average of all individ-
uals’ expected utility for each candidate:

8o 2 O,U0(o) =
1
n

nX

i=1

U
i

(o) (3)

Where O is the set of candidates and n is the population size.
Our collective choice function will find the expected utility
for each candidate, for each collective C

j

:
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,8c 2 C, U
j

(o) =
1
k

j

kjX
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U
i

(o) (4)

Where k
j

is the number of individuals in collective C
j

.

Simulation run: At each time-step of the simulation, each
individual will update her beliefs based on the vote count,
which is provided to all individuals, and her stubbornness.
She will then update her expected utility and select the can-
didate with the highest expected utility as her “vote”. After
all individuals have updated their belief, a new vote count is
determined.

We ran the simulation several times, changing the initial-
ization parameters to observe the final results after conver-
gence. First, we were interested in determining if the single
consensus social choice function accurately predicts the fi-
nal vote count. Second, we were interested in the average
utility of each collective at convergence. Finally, we were
interested in the characteristics of individuals who switched
votes during the simulation. In particular, we were interested
in which collectives they moved from and to.

Results: Simulation parameters:
• weights: {0.05, 0.46, 0.49}
• N : 10,000
• C: 100
In this run, the leftmost candidate begins with a small
portion of the votes, while the rightmost candidate has

RO Size Left Center Right
CLR 3601 -0.12 (0.030) 4.13 (0.36) -2.86 (1.94)
RLC 2901 -0.23 (0.006) -2.30 (1.40) 4.51 (0.12)
RCL 2093 -0.13 (0.015) 1.50 (0.94) 4.51 (0.09)
CRL 1091 -0.08 (0.030) 4.17 (0.24) 1.46 (1.02)
LCR 313 0.32 (0.120) -2.22 (1.70) -3.54 (1.35)
LRC 1 5.38 (0.000) -1.11 (0.00) -0.91 (0.00)

Table 2: Average expected utility for each candidate, for
each rank order (RO).

the highest proportion of the votes by a margin that is
smaller than the leftmost candidate’s votes. We repeated the
simulation with these parameters several times with results
similar to the following. The following table shows the final
vote count and average expected utility (from eq. ??) of
each candidate at convergence.

Left Center Right
Final vote count 314 4692 4994

Expected utility -0.13 1.52 1.27

The most significant discovery in this simulation is that
the candidate with the highest average expected utility is not
the candidate with the highest vote count, even though each
individual is voting according to her highest expected utility.
(?) discusses the range of values that result in inconsistent
behavior. Interestingly, the most inconsistent results occur
when the weights ratio is Right=Left+Center.

We now show the results of our collective choice function.
Each collective is defined by their rank order, shown in the
left column in Table ??. The second column shows the col-
lective’s size and the remaining columns show the collective
belief, computed from eq. ??, followed by the variance in
parentheses.

We note that the average expected utilities for each candi-
date over the whole population P can be derived from these
results using the formula:

U(o) =
mX

j=1

U
j

(o) ⇤ |C
j

|
|P | (5)

Where m is the number of collectives. While the average
expected utilities over P incorrectly predicts the outcome,
we observe that the average expected utility of each col-
lective’s preferred candidate results in collective beliefs
that accurately reflect the outcome of the election (Right is
highest and Right wins), shown in the following table:

Left .0313*.32+.0001*5.38 = 0.011

Center .3601*4.13+.1091*4.17 = 1.94

Right .2901*4.51+.2093*4.51 = 2.25

We now demonstrate that the rank order of the individu-
als that switch votes is a useful predictor of voter behavior.
In the run described, 180 individuals switched votes during
the simulation because the candidate with the highest ex-
pected utility changed. We observe that all of the individuals
that switched moved from the collective represented by the
rank order LCR, to the collective represented by the rank
order CLR. The fact that all individuals who switched were



from the same collective supports our theory that our collec-
tive choice function is a better predictor of voting behavior
than the single consensus social choice function. This social
choice function does not distinguish these potential “vote
switchers” from the rest of the population. As we might ex-
pect, the individuals that switched collectives and votes had
expected utilities that indicated that they were nearly indif-
ferent to their first and second preferred options. As in a real
election, “swing votes” prove to be particularly important.

Finally, our results imply the Nash equilibrium solution
for this election simulation. This game theoretic solution
occurs when all players are aware of the strategy of their op-
ponents, and are maintaining a strategy that maximizes their
utility given their opponents’ strategies (?). In our simu-
lation, we consider the strategy of a collective (or individ-
ual) to be the candidate that the collective has selected. In
the simulation, each individual makes a selection with the
awareness of the vote count, which represents the strategy
of the rest of the population. During the simulation, individ-
uals may change their strategy to maximize their expected
utility given the vote count. However, once individuals have
stopped switching votes, they have settled on a strategy that
maximizes their utility given the strategies of the rest of the
population. Each collective in Table ?? reflects the strategy
of its members through its expected utility.

5 Future Work and Conclusions

Our results indicate that interesting behavior occurs at the
borders of collectives, in other words in situations in which
individuals are nearly indifferent to multiple options. In our
continued research, we will investigate these situations more
closely as they may reveal additional constraints on collec-
tives worth considering. A natural next step from extracting
symbolic preference orders from quantitative results would
be to represent the preference orders quantitatively. For in-
stance, perhaps each individual or collective could have a
distribution over the possible preference orders. Comple-
menting the research described in this paper, we have devel-
oped an algorithm to partition a population into collectives
and form collective belief models.

By couching the social choice function in a competitive
environment, we are able to overcome many of the theoreti-
cal limitations of the single consensus model. Our collective
choice function discovers a set of Pareto optimal solutions in
situations for which there is no single solution, and in some
strategic situations it is able to infer the Nash equilibrium
solution. Our election simulation extended irrationality re-
sults by identifying a situation in which the traditional social
choice function fails to predict the outcome of an election.
The simulations also imply that our collective choice func-
tion produces solutions that more accurately predict the be-
havior of large groups of decision-makers.
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